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Abstract

This paper addresses the fundamental problem of maximizing the heat transfer rate density in a fixed volume in the

limit of decreasing length scales. In this limit boundary layers disappear, optimized channels are no longer slender, and

existing results for optimal spacings break down. Three configurations are optimized analytically based on the inter-

section of asymptotes method: volumes filled with parallel-plates channels, volumes filled with uniformly distributed

spheres, and volumes filled with parallel plates and porous structure in each parallel-plates channel. The small-spacings

asymptote is for slow Poiseuille and, respectively, Darcy flow. The large-spacings asymptote is based on heat transfer

that approaches pure conduction around bodies immersed in a stationary medium. The geometric results are the

optimal flow channel size, the optimal porosity of the assembly, and the maximized heat transfer rate density. The latter

increases sharply as dimensions become smaller. This trend, and the method of optimizing flow architecture to achieve

maximal heat transfer density, are essential in the continuing miniaturization of heat transfer devices.

� 2004 Elsevier Ltd. All rights reserved.
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1. Why small dimensions are needed

The key to packing maximum convective heat trans-

fer rate per unit volume is the observation that every fluid

packet and every volume element must be used for the

purpose of transferring heat. Fluid flow regions that do

not ‘‘work’’ in a heat transfer sense must be avoided.

Flow regions that worked too much, and have become

ineffective (filled with ‘‘used’’ fluid), must be eliminated.

This activity of arranging and rearranging of the volu-

metric distribution of flow and heat transfer leads to the

construction of internal structure––optimal flow archi-

tecture for maximal global performance subject to con-

straints. This ‘‘constructal’’ principle is responsible for

the emergence of many flow structures in engineered and

natural flow systems, as shown in two recent books [1,2].
* Tel.: +1-919-660-5309; fax: +1-919-660-8963.

E-mail address: dalford@duke.edu (A. Bejan).

0017-9310/$ - see front matter � 2004 Elsevier Ltd. All rights reserv

doi:10.1016/j.ijheatmasstransfer.2004.02.025
The principle of forcing the fluid to ‘‘work’’ every-

where can be illustrated by considering the performance

of a large volume that is filled with parallel-plates

channels with forced convection. One channel is shown

in Fig. 1, where the designer may contemplate two ex-

tremes. First, if the channel length L is made shorter

than the thermal entrance length XT, then the fluid that

occupies the core of the duct does not participate in the

heat transfer enterprise. Such fluid must not be allowed

to leave the channel without having interacted thermally

with the walls.

In the other extreme, when L is made longer than

XT, the fluid is so saturated with heating or cooling

from the wall, that it can accommodate further heating

or cooling only by overheating, i.e., by changing its

bulk temperature in the downstream direction. This

extreme (the fully developed regime) must be avoided.

It is important to note that the decision to avoid the

thermally fully developed flow regime is new relative to

current trends in microscale heat exchanger design,
ed.
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Nomenclature

A frontal area of package (m2)

BeL Bejan number, or pressure drop number

based on L Eq. (2)

Bep porous medium Bejan number, Eq. (48)

cp specific heat at constant pressure

(J kg�1 K�1)

CD drag coefficient

d diameter of spherical particle (m)

D spacing between parallel plates, and distance

between centers of adjacent particles

f number of particles present in the unit vol-

ume Vu
F1 drag force on one particle (N)

g gravitational acceleration (m s�2)
�h averaged heat transfer coefficient

(Wm�2 K�1)

H height (m)

k fluid thermal conductivity (Wm�1 K�1)

km porous medium thermal conductivity

(Wm�1 K�1)

K permeability (m2)

L length in the flow direction (m)

_m mass flow rate (kg s�1)

N number of particles in volume AL
NV number of particles per unit volume (m�3)

q heat transfer rate (W)

q1 heat transfer rate from one particle (W)

q000 heat transfer rate density (Wm�3)

Rap porous medium Rayleigh number Eq. (41)

Tw surface temperature (K)

T0 initial fluid temperature (K)

u volume averaged velocity (m s�1)

up free stream velocity (m s�1)

U mean fluid velocity in channel (m s�1)

V volume (m3)

Vu unit volume (m3)

W width (m)

Greek symbols

a fluid thermal diffusivity (m2 s�1)

am porous medium thermal diffusivity (m2 s�1)

b coefficient of volumetric thermal expansion

(K�1)

DP pressure drop (Nm�2)

l viscosity (kg s�1 m�1)

m kinematic viscosity (m2 s�1)

q density (kgm�3)

/ porosity

Subscripts

max maximum

opt optimum

Superscript

(~) dimensionless variables, Eqs. (11) and (24)
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where laminar fully developed flow is a routine design

feature (e.g., [3–6]).

The best choice is in-between, L � XT, because in this

configuration all the fluid of the channel cross-section is

active in a heat transfer sense. The fluid leaves the

channel as soon as it completes its mission, i.e., as soon

as the boundary layers have merged. In this configura-

tion the channel volume is used to the maximum for the

purpose of transferring heat between the stream and the

walls. This principle has been used to optimize spacings

in several channel configurations with natural and

forced convection: volumes filled with a stack of con-

tinuous or staggered parallel plates, volumes filled with

parallel cylinders in crossflow, and three-dimensional

pin fin arrays with impinging flow [7–23]. These results

have been summarized in [1,2,25,26].

The simplest example of geometric optimization for

forced convection was the optimization of the spacing

between parallel-plates channels that fill a larger volume

[11]. With reference to the lower drawing of Fig. 1, when

the pressure difference between the two ends of the

channel is specified ðDPÞ, maximal heat transfer rate per

unit volume is achieved when
Dopt

L
ffi 2:73Be�1=4

L ð1Þ

where BeL is the pressure difference number based on the

flow length L, which Bhattacharjee and Grosshandler

[27] and Petrescu [28] termed the Bejan number,

BeL ¼ DPL2

la
ð2Þ

The corresponding maximal average heat transfer rate

per unit of channel volume is

q000max K 0:62
k
L2

ðTw � T0ÞBe1=2L ð3Þ

where ðTw � T0Þ is the temperature difference between

the plate surfaces and the entering single-phase coolant.

Eqs. (1)–(3) result from the intersection of asymptotes

method, in which q000 is estimated analytically in two

extremes: (a) narrow spacings, in which the flow through

the channel is in the Hagen–Poiseuille regime, and (b)

wide spacings, where the channel is thicker than the

boundary layers. The intersection of asymptotes (a) and

(b) yields Eqs. (1) and (3). The inequality sign in Eq. (3)



Fig. 1. Maximal heat transfer rate per unit volume is achieved when the channel length matches the thermal entrance length of the

flow.
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is a reminder that the intersection of (a) and (b) provides

a q000max estimate that falls above the actual peak of the

q000ðDÞ curve. Numerical maximizations of q000 vs. D
confirm the analytical form of Eq. (3), and show that the

factor 0.62 should be replaced by 0.4 [11,29].

The intersection of asymptotes method and scale

analysis were developed as problem solving methods for

convection in 1984 [8]. Additional applications of the

intersection of asymptotes method are presented in [1,2],

and in the 1995 edition of [8]. The accuracy, generality

and mathematical basis of the intersection of asymptotes

method were discussed most recently by Lewins [30].

The new work reported in this paper is in response to

the message furnished by Eq. (3). The volumetric density

of heat transfer rate can be increased by decreasing L,
because q000max is proportional to L�1. Smaller and smaller

dimensions are attractive. According to Eq. (1), how-

ever, D is proportion to L1=2. This means that the aspect

ratio D=L is proportional to L�1=2, and the channel be-

comes less slender when the size L becomes smaller. In

this limit of increasing D=L ratios, the boundary layer

slenderness assumption on which asymptote (b) and

Eqs. (1)–(3) are based breaks down.

The fundamental question then is this: What are the

design rules for channels with maximal heat transfer

density when dimensions are so small that Eqs. (1)–(3)
do not apply? This question is important because the

push for maximal heat transfer rate densities, which

generated Eqs. (1)–(3), continues undiminished toward

smaller dimensions.
2. Optimal geometry in the small-scales limit

Consider the limit of dimensions ðL;DÞ so small that

D=L is not much smaller than 1. Boundary layer theory

does not hold. If the channels are sufficiently wide to be

surrounded completely by cold fluid ðT0Þ, then the heat

transfer from each plate to the fluid is by quasi-radial

conduction. This regime is shown in Fig. 2(b). In the

other extreme, Fig. 2(a), where dimensions are again

small, but, in addition, the channels that fill the fixed

volume of the package (HL2) are many, the flow through

each channel is in the Hagen–Poiseuille regime. In re-

gime (a) the mean velocity is

U ¼ D2

12l
DP
L

ð4Þ

The total flow rate through the HL2 volume is _m ¼
qHLU . The total enthalpy increase experienced by the _m
stream is q ¼ _mcP ðTw � T0Þ, because in this limit the

spacing D is so tight, and the wall-fluid thermal contact



Fig. 2. Stack of parallel plates: (a) the small-D limit, and (b) the large-D limit.
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so good, that the outlet temperature of the _m stream is

essentially equal to the plate temperature Tw. The volu-

metric heat transfer density is q000 ¼ q=ðHL2Þ, or

q000 ¼ D2DP
12mL2

cpðTw � T0Þ ð5Þ

In the opposite extreme, Fig. 2(b), each plate is sur-

rounded by T0 fluid, because convection is negligible. In

the limit of small linear dimensions, the rate of heat

transfer from one plate to the fluid ðq1Þ is proportional to
LkðTw � T0Þ, where L is the linear dimension of the plate.

We can use a more accurate q1 estimate by noting that if

q1 emanates from a Tw disc of diameter d immersed in a

medium at T0, then q1 is given by (cf. [31, p. 119])

q1 ¼ 4dkðTw � T0Þ ð6Þ

In the configuration of Fig. 2(b) the plate area is L2 in-

stead of pd2=4, which means that in Eq. (5) we may

replace d approximately with ð4=pÞ1=2L. Next, the total

heat transfer rate emanating from the stack is q ¼ Nq1,
where N ¼ H=D is the number of plates in the stack.

Finally, the volumetric rate of heat transfer is q000 ¼
q=ðHL2Þ, which becomes

q000 ¼ 8kðTw � T0Þ
p1=2DL

ð7Þ

In summary, asymptotes (5) and (7) show that q000 can
be maximized with respect to D. Eq. (5) holds when D is

small, and shows that q000 decreases as D decreases. Eq.

(7) holds when D is large, and shows that q000 decreases as
D increases. This asymptotic behavior guarantees that

q000 reaches a maximum in the vicinity of the intersection
of Eqs. (5) and (7). The optimal spacing and maximal

heat transfer density are

Dopt

L
ffi 3:78Be�1=3

L ð8Þ

q000max K 1:2
k
L2

ðTw � T0ÞBe1=3L ð9Þ

Eq. (9) shows that q000 increases as L�4=3 as L decreases.

This increase is faster in comparison with the behavior of

q000 at larger scales, Eq. (3), where q000max increases as L
�1 as

L decreases. This change in the behavior of q000max stresses

not only the importance of seeking smaller dimensions,

but also the importance of knowing the correct scaling

laws when dimensions have become small enough.

The transition from the large-scales optimum to the

small-scales optimum is obtained by intersecting Eqs. (1)

and (8), or Eqs. (3) and (9). In either case, the transition

is found to occur at

Be1=2L � 8 ð10Þ

where Be1=2L K 8 is the domain of validity of the small-

scales solution, Eqs. (8) and (9). The number Be1=2L

represents a dimensionless flow length L when DP is

specified. This observation recommends the use of the

dimensionless variables

ðeD; eLÞ ¼ ðD; LÞ DP
la

� �1=2

~q000 ¼ q000la
DPkðTw � T0Þ

ð11Þ
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where eL is the same as Be1=2L . These dimensionless vari-

ables transform Eqs. (1) and (8) intoeDopt ffi 2:73eL1=2 ð12Þ

eDopt ffi 3:78eL1=3 ð13Þ

and Eqs. (3) and (9) into

~q000max K 0:62eL�1 ð14Þ

~q000max K 1:2eL�4=3 ð15Þ

These two sets of asymptotes are displayed in Fig. 3.

The heat transfer density increases in accelerated fashion

as the length scale eL decreases. In the same direction, the

decrease of eDopt slows down. The transition from large

scales to small scales occurs in the vicinity of eL � 8,

where the channel slenderness ratio is eDopt=eL � 1, in

accordance with the threshold below which the bound-

ary layers in the entrance region (Fig. 1) breaks down.
Fig. 3. The effect of the decreasing length scale ðeLÞ on the

optimal spacing and maximal heat transfer rate density.

Fig. 4. Spheres packed in a fixed space: (a)
3. Packed spheres

Optimal spacings represent optimal packing. In the

case of Fig. 2, the volume H 2L is packed optimally with

parallel plates when the spacing is selected in accordance

with Eqs. (1) and (8). The optimization of packing is

pursued in another generic configuration in Fig. 4. The

volume V ¼ AL contains a number ðNÞ of heat-gener-

ating spheres of diameter d and temperature Tw. The
coolant that bathes this volume has the inlet tempera-

ture T0. The flow is driven by the pressure gradient

DP=L. The objective is to maximize the heat transfer rate

density ðq000Þ when Tw, T0 and other flow parameters are

fixed. The key variable is the spacing between spheres,

which is related to varying N , or the porosity of the

system,

/ ¼ 1� pNd3

6V
ð16Þ

The intersection of asymptotes method consists of

determining q000 in two extremes, tight spaces (Fig. 4a)

and large spaces (Fig. 4b), and intersecting the two

asymptotes. When spaces are tight, and if the flow is

slow enough for the Darcy model to be valid, the volume

averaged fluid velocity in the L direction is

u ¼ K
l

DP
L

ð17Þ

where K is the permeability of the porous medium that

resides inside V . In the same slow-flow limit, the outlet

temperature of the fluid is essentially equal to the tem-

perature of the solid particles, Tw. The total heat transfer
rate from solid to fluid is q ¼ quAcpðTw � T0Þ. The cor-

responding heat transfer density is q000 ¼ q=V , which

after using Eq. (17) becomes

q000 ¼ qcpKDP
lL2

ðTw � T0Þ ð18Þ

When the spheres are far apart, and if the flow is so

slow that convection is negligible relative to conduction

in the spaces between spheres, then an adequate heat

transfer estimate can be made based on the assumption
small spacings, and (b) large spacings.



Fig. 5. The optimized porosity of the volume packed with

spheres and maximal heat transfer rate density.

Fig. 6. The optimized distance between particle centers.
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of pure conduction. The steady-state heat transfer rate

from one sphere is (e.g., [31])

q1 ¼ 2pkdðTw � T0Þ ð19Þ

The total heat transfer rate ðq ¼ Nq1Þ leads to the heat

transfer density q000 ¼ q=V , which in view of Eq. (16) is

q000 ¼ 12

d2
ð1� /ÞkðTw � T0Þ ð20Þ

To summarize, Eq. (20) shows that when spacings are

large the heat transfer density decreases as the spacings

(or /) increase. In the other extreme, Eq. (18) shows that

when spaces are tight and continue to decrease, q000 de-
creases because the permeability decreases. The mid-

range where q000 reaches its maximum is identified by

intersecting Eqs. (18) and (20),

KoptDP
alL2

¼ 12

d2
ð1� /optÞ ð21Þ

The optimal packing is characterized by the permeability

Kopt and porosity /opt. Assuming that porosities are not

almost equal to 1, parameters K and / are related in

accordance with the Carman–Kozeny theory [32],

K ¼ d2/3

180ð1� /Þ2
ð22Þ

in which 180 is an empirical constant. Then, Eq. (21)

pinpoints the optimal porosity of the system,

1

/opt

 
� 1

! eL2=3

~d4=3
¼ 0:0774 ð23Þ

where, in accordance with the nondimensionalization

method chosen in Eq. (11),

ð~d; eLÞ ¼ ðd; LÞ DP
la

� �1=2

ð24Þ

The optimal porosity /opt is a function of ~d2=eL. This
curve is labeled ‘‘Eq. (22)’’ in Fig. 5 because it is based

on the Carman–Kozeny correlation (22).

The optimal spacing between particles can be calcu-

lated after making an assumption regarding the geo-

metric arrangement. If the spheres are placed in a cubic

arrangement with the distance D between centers, then

the porosity is

/ ¼ 1� p
6

d
D

� �3

ð25Þ

By eliminating / between Eqs. (23) and (25), we find the

optimal relative spacing D=d, as a function of the group
~d2=eL. This function is labeled ‘‘Eq. (22)’’ in Fig. 6. The

spacing increases as ~d2=eL decreases, i.e., in the same

direction as /opt ! 1. The smallest porosity occurs when

the particles touch, namely, / ¼ 0:4764 when D=d ¼ 1.
If the spherical particles are arranged more tightly so

that their centers are the corners of tetrahedrons, then

the porosity of the medium is

/ ¼ 1� p
21=23

d
D

� �3

ð26Þ

Eqs. (23) and (26) yield the relative size of the side of the

tetrahedron. This result is shown with dashed line in Fig.

6. When the spheres touch the porosity is 0.26. The effect

of the geometric arrangement in the packing is small;

spacings are larger when the particle centers form tetra-

hedrons.

The maximal heat transfer rate density that corre-

sponds to the design optimized above is

~q000max K
12

~d2
ð1� /optÞ ð27Þ



Fig. 7. Upper bounds for the maximal heat transfer rate den-

sity in a volume packed uniformly with spherical particles.
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Note again that the inequality sign is due to the inter-

section of asymptotes method. The right-hand side of

Eq. (27) is the correct order of magnitude of ~q000max, which

shows the strong effect that the particle size has on the

heat transfer density. The heat transfer rate density in-

creases substantially as the smallest dimension of the

configuration ð~dÞ becomes smaller. The optimal porosity

increases in the same direction. Eqs. (27) and (23) can be

combined to eliminate /opt, and to reveal ~q000max as a

function of the internal and external dimensions ð~d; eLÞ.
See the curve labeled ‘‘Eq. (22)’’ in Fig. 7: the heat

transfer rate density increases as eL decreases.
4. Sparsely distributed particles

In summary, a structure with smaller d and larger /
values is better. This points in the direction of sparsely

distributed particles / ! 1, where the preceding results

[Eqs. (23)–(27)] are, at best, valid only approximately

because they are based on the Carman–Kozeny corre-

lation (22). We analyze this limit in order to shed light

on the optimization of man-made porous structures, for

which, in many cases, / ! 1. In the present analysis, the

sparse distribution of spherical particles plays the role of

simple model, i.e., a facsimile with a very small number

of dimensions, which accounts qualitatively for multi-

dimensional man-made porous structures.

The dimensions are the same as in the preceding

section: d, D and L. The difference is that in the / ! 1

limit we may regard the flow around each particle as

independent of the flow around neighboring particles.

Furthermore, we assume that the particle size is so small

that the Reynolds number upd=m is smaller than 1, and,

the sphere drag coefficient is given by Stokes flow solu-

tion
CD ¼ 24

upd=m
ð28Þ

Here up is the free stream velocity in the fluid space,

up ¼
u
/

ð29Þ

and u is the volume averaged velocity used in Eq. (17).

The drag experienced by one particle is

F1 ¼
24

upd=m
1

2
qu2p

p
4
d2 ð30Þ

The longitudinal force balance on the volume AL shown

in Fig. 4 requires

NVALF1 ¼ ADP ð31Þ

where NV is the number of particles present per unit

volume. By combining Eq. (31) with Eqs. (28)–(30) we

obtain an expression for DP=L, which can be compared

with the Darcy law (17). From this comparison results

the permeability formula

K ¼ /
3pdNV

ð32Þ

The number NV depends on the geometric arrange-

ment. For example, in the cubic arrangement NV ¼ 1=Vu,
where Vuð¼ D3Þ is the unit volume represented by one

cube of side D. In the case of a tetrahedron of unit

volume Vu, the corresponding number is NV ¼ ð1=6Þ=Vu.
To keep the analysis general, we write that

NV ¼ f
Vu

ð33Þ

where f is the fraction of one particle that belongs to

one unit volume Vu (namely, f ¼ 1 for cube, and

f ¼ 1=6 for tetrahedron). The porosity can also be ex-

pressed in terms of NV,

/ ¼
Vu � f p

6
d3

Vu
¼ 1� NV

p
6
d3 ð34Þ

such that Eqs. (32) and (34) yield

K ¼ d2

18

/
1� /

ð35Þ

This is the theoretical permeability for any arrange-

ment of spheres when /K 1 and upd=m < 1. It replaces

Eq. (22) in the analysis shown in the preceding section,

and the new results are presented as curves ‘‘Eq. (35)’’ in

Figs. 5–7. Qualitatively, the trends are the same. For

example, in place of Eq. (23), the optimal porosity is

given by

1� /opt

/1=2
opt

¼ ð216Þ�1=2
~d2eL ð36Þ
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This curve has been added to Fig. 5. We see again that

the optimal porosity increases as the particle size de-

creases. The corresponding spacing between particle

centers is shown in Fig. 6.

Eq. (27) holds unchanged in the / ! 1 limit. By

combining it with Eq. (36), and making the approxi-

mation /1=2
opt � 1, we reach the important conclusion that

in the / ! 1 limit the maximal heat transfer density

becomes independent of particle size,

~q000max K
ð2=3Þ1=2eL ð37Þ

This formula is plotted as ‘‘Eq. (35)’’ in Fig. 7. The eL
dependence exhibited by ~q000max is qualitatively the same as

in Eq. (15), i.e., the same as when the volume is packed

with heat transfer distributed on parallel plates.
Fig. 8. Volume filled with vertical heat-generating plates sep-

arated by a fluid saturated porous medium.
5. Optimal spacings for channels filled with a porous

structure

The optimization of spacings in the limit of

decreasing length scales leads to flow structures that

look more and more like porous structures with ‘de-

signed’ pores. The development of such structures de-

fines a field that may be regarded as designed porous

media [2]. In this section we cover another fundamental

configuration of designed porous media, namely, the

optimization of spacings between plates that sandwich a

porous medium. For example, the channels may be

occupied by a metallic foam (e.g., [33,34]) such that the

saturated porous medium has a thermal conductivity

ðkmÞ and a thermal diffusivity ðamÞ that are much higher

than their pure fluid properties ðk; aÞ, which were used in

Sections 2–4. We consider both natural convection and

forced convection with Boussinesq incompressible fluid,

and assume that the structures are fine and thick enough

that Darcy flow prevails in all cases.

The natural convection configuration is shown in

Fig. 8, which is the same as Fig. 2a with the plates ori-

ented vertically. This time each D-thin space is filled with

the assumed fluid saturated porous structure. The width

in the direction perpendicular to Fig. 8 is W . The effec-

tive pressure difference that drives the flow is due to

buoyancy,

DP ¼ qHgbðTw � T0Þ ð38Þ

This DP estimate is valid in the limit where the spacing D
is sufficiently small that the temperature in the channel

porous medium is essentially the same as the plate

temperature Tw. In this limit, the heat current extracted

by the flow from the H 
 L volume is q ¼ _mcpðTw � T0Þ,
with _m ¼ qULW and, according to Darcy’s law,

U ¼ KDP=ðlHÞ ð39Þ
where K is the permeability of the structure. In conclu-

sion, the total heat transfer rate in the small-D limit is

independent of the spacing D

q ¼ qcpðTw � T0ÞLW ðKDP Þ=ðlHÞ ð40Þ

In the opposite limit, D is large enough so that the

natural convection boundary layers that line the H -tall

plates are distinct. The heat transfer rate from one

boundary layer is �hHW ðTw � T0Þ, where the classical

result (e.g., [26,31]) for the average heat transfer coeffi-

cient is �hH=km ¼ 0:888Ra1=2p , and Rap is the Rayleigh

number for Darcy flow,

Rap ¼ KgbHðTw � T0Þ=ðammÞ ð41Þ

The number of boundary layers in the H 
 L volume is

2L=D. In conclusion, the total heat transfer rate de-

creases as D increases (see Fig. 9)

q ¼ 1:78ðL=DÞWkmðTw � T0ÞRa1=2p ð42Þ

The effect of the spacing (Fig. 9) requires discussion.

For maximal thermal conductance q=ðTw � T0Þ, the

spacing D must be smaller than the estimate obtained by

intersecting asymptotes (40) and (42):

Dopt=H K 1:78Ra�1=2
p ð43Þ

The simplest design that has the highest possible con-

ductance is the design with the fewest plates, i.e., the

largest Dopt, hence Dopt=H ffi 1:78Ra�1=2
p for the recom-

mended design. Contrary to Fig. 9, however, q does not

remain constant as D decreases indefinitely. There must

exist a small enough D below which the passages are so

tight (tighter than the pores) that the flow stops. An

estimate for how large D should be so that Eq. (43) is

valid is obtained by requiring that the Dopt value for



Fig. 9. The effect of the channel spacing on the global thermal

conductance when the channels are filled with a fluid-saturated

porous structure.
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natural convection when the channels are filled only

with fluid [8,26],

Dopt=H ffi 2:3½gbH 3ðTw � T0Þ=ðamÞ��1=4 ð44Þ

must be smaller than the Dopt value of Eq. (43). We find

that this is true when

H 2

K
am

a
> Rap ð45Þ

in which, normally, am=a 
 1 and H 2=K 
 1.

The forced convection configuration can be opti-

mized similarly. The flow is driven by the imposed DP
through parallel-plates channels of length L and width

W . The thermal conductance in the small-D limit is the

same as in Eq. (40). In the large-D limit there are 2H=D
distinct boundary layers, and the heat transfer rate

across one boundary layer is �hLW ðTw � T0Þ. The L-
averaged heat transfer coefficient is [26]: �hL=km ¼
1:128ðUL=amÞ1=2. Putting these formulas together, we

find that in the large-D limit the global thermal con-

ductance is

q ¼ 2:26ðH=DÞWkmðTw � T0ÞðUL=amÞ1=2 ð46Þ

The forced-convection asymptotes (10) and (46) have

the same behavior as in Fig. 9. The highest conductance

occurs to the left of the intersection of the two asymp-

totes, when

Dopt=LK 2:26Be�1=2
p ð47Þ

and where Bep is the Bejan number for the porous

medium,

Bep ¼ ðDPKÞ=ðlamÞ ð48Þ

This forced-convection optimization is valid when the

Dopt estimate for the channel with pure fluid [Eq. (1)] is
smaller than the Dopt value provided by Eq. (47), i.e.,

when

L2

K
am

a
> Bep ð49Þ

In summary, Eqs. (43) and (47) provide estimates for

the optimal spacings when the channels between heat-

generating plates are filled with a fluid-saturated porous

structure. The relevant dimensionless groups are Rap,
Bep, K=H 2, K=L2 and am=a. The symmetry between Eqs.

(43) and (47), and between Eqs. (45) and (49), reinforces

Petrescu’s [28] argument that the role of the Bejan

number in forced convection is analogous to that of the

Rayleigh number in natural convection.
6. Conclusions

This paper addressed the fundamental question of

how to maximize the density of heat transfer rate in a

finite-size volume. The new aspect of this work is the

limit of decreasing length scales. In this limit boundary

layers disappear, and existing solutions [7–26] for the

maximization of heat transfer rate density are not valid.

The maximization of heat transfer rate density in the

limit of decreasing scales is key to the continued mini-

aturization of heat transfer devices.

This work revealed several important and funda-

mental results. First, it showed that it is possible to

optimize the internal spacings of volumes with forced

convection when boundary layers disappear. This was

demonstrated for two configurations, a volume filled

with parallel plates, and a volume packed with spheres

of one size. Furthermore, volumes packed with spheres

were optimized here for the first time, because unlike the

parallel-plates and other configurations [7–26], they had

not been optimized at large scales where boundary lay-

ers are present.

Each configuration is characterized by three length

scales: (i) the external dimension of the volume, which is

measured in the flow direction ðLÞ, (ii) the thickness of

the solid elements (plate thickness, sphere diameter), and

(iii) the internal dimension represented by the size of the

channel through which the fluid flows (the spacing D, or
the porosity of the assembly). Dimension (iii) was opti-

mized for maximal heat transfer rate density, while

dimensions (i) and (ii) were specified. The optimized

configuration showed how the internal flow spaces

change as the dimensions (i) and (ii) continue to de-

crease. The overall performance increases as dimensions

become smaller.

In the case of volumes filled with parallel-plates

channels, the small-scales solution becomes valid when

the external dimension eL becomes smaller than 8. In the

small-scales limit, the heat transfer rate density increases

as eL�4=3, which is a faster increase than at larger scales
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where boundary layers are present. In the small-scales

limit the optimal spacing D is larger than the plate length

L, and the ratio D=L increases as eL�2=3.

Volumes filled with solid spheres are porous media

the porosities of which can be optimized. We showed

this by using two models for the permeability of the

medium, the Carman–Kozeny correlation, Eq. (22), and

the theoretical limit of Stokes flow around isolated

spheres, Eq. (35). By assuming certain arrangements for

the centers of the spheres (e.g., cube, tetrahedron), the

optimal porosity is translated into an optimal spacing

between spheres. The optimal porosity approaches 1 as

the group ~d2=eL decreases. In the same limit, the maximal

heat transfer rate density varies as eL�1, and is indepen-

dent of the sphere size.

Section 5 reported the development of optimal

spacings for channels filled with a fluid-saturated porous

structure. The results are the most fundamental, and are

based on a simple model and a simple analysis: Darcy

flow, and the intersection of asymptotes method. The

same idea of geometry optimization deserves to be

pursued in future studies, based on more refined models

and more accurate methods of flow simulation.

In particular, the analytical approach illustrated in

this paper can be refined by basing the porous medium

model on the new work that has been emerging on

channels filled with coarse metallic porous structures,

e.g. [33,34]. For example, the present models did not

include features that account for the connectivity of the

solid parts and conduction along the solid. This was

done for two reasons, simplicity and design.

Simplicity was chosen because it is the most effective

way of explaining new ideas. It is true that the same ideas

can be explored in more specific cases and regimes of

operation, where additional modeling features may have

to be taken into account. The contribution of simplicity

is this: the opportunities to optimize morphing flow

architectures (constructal design) become clear even in

the nakedly simple models that one finds in the intro-

ductory textbooks. It is in this way that the constructal

principle of flow architecture becomes textbook material.

Design is the main feature of the structures analyzed in

this paper. These structures begin to look like ‘‘designed

porous media’’ [2] only in the limit of decreasing dimen-

sions, when the macroscopic (human) scale of the device

remains fixed. Such structures should not be confused

with naturally occurring porous media, in which the solid

connectivity question may be raised even earlier. The

designer is entitled to contemplate the maximization of

heat transfer packing while looking at drawings such as

Figs. 1, 2 and 4, where the solid parts are not connected.

The manufacturing of the optimized structure is a sub-

sequent step, which, if it shows the need for extensive

solid–solid connections, may recommend a subsequent

look at the constructal design of structure. But even

without such a recommendation, to include additional
modeling features is a very good idea for a future fun-

damental study on the path opened by this paper.

In summary, we traced in very simple terms the route

to the highest density of heat transfer rate when

dimensions continue to decrease. The route consists of

optimizing the internal geometry of the device. The

method is a continuation of what has been used at larger

scales, where boundary layers are present and optimized

channels are slender [1,2]. The method applies at small

scales, as long as the continuum model holds. But even

before the continuum description breaks down, surface

effects such as electrokinetics in liquid flow [35] will have

to be taken into account.
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